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The present work is a numerical study of fluid flow and energy transport in single 
rock fractures. Each fracture is modelled as a parallel channel with a distribution of 
contact areas where the fracture aperture is zero. The pressure drop required to 
sustain a given rate of flow is calculated by solving the Stokes equations along with 
the incompressibility constraint. The permeability of the fracture is then determined 
as the ratio of mean flow and pressure drop. With flow distribution known, the 
@dvectiondiffusion equation is solved for a thermal mixing problem. All differential 
equations have been solved by the finite-element technique. 

Results show that the fracture permeability is affected by the presence of contact 
areas and the magnitude of h, the mean fracture aperture. The limiting case of zero 
aperture is realized at h/L < 0.016, where L is the characteristic dimension of the 
fracture. The other limiting case of a two-dimensional fracture is seen for h/L 2 1 .  
The thermal dispersion profiles at steady state are unaffected by the size of aperture 
h and the presence of contact areas for PQclet numbers Pe less than 50 and a contact 
fraction of up to 20%. However, the transient dispersion problem is seen to be 
influenced by the contact areas for Pe > 10. 

1. Introduction 
Fluid flow and heat transfer in fractured rocks and geologic faults are rather poorly 

understood. It appears that fluid movement falls into distinct regimes, each of which 
is governed by capillary theory, Darcy’s law and cubic law, respectively. The 
controlling features which determine pressure drop are fluid saturation and fracture 
aperture. Saturation is defined as the ratio of the volume of water present in a 
fracture to the volume of the fracture opening. A capillary theory for unsaturated 
flow in a fractured matrix has now been developed by Wang & Narasimhan (1985). 
In the present study, a water-saturated single rock fracture has been considered. The 
flow pattern through this fracture and the details of thermal dispersion have been 
numerically determined by solving the appropriate differential equations. The 
detailed knowledge of thermohydraulic behaviour of a single fracture is expected to 
assist fracture network models which characterize a rock as a whole. With plans to 
dispose of nuclear waste from power plants in granitic rock formations under the 
earth, such characterization has immense practical value (Chapman &, McKinley 
1987). Fluid movement in this application refers to groundwater flow and heat 
transfer relates to energy release by radioactive decay. 

The conventional approach to studying flow in saturated fractures involves 
modelling them as parallel plates with a spacing h, which is a spatial variable. The 
average fracture aperture is determined by one of the following methods. 
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(i) h = Flow volume within fracturelarea of fracture plane. 

(ii) 

where hi are individual apertures measured at N points in the fracture. In many 
laboratory experiments it is easy to measure the volume-averaged aperture rather 
than its distribution over the fracture plane. Sample values of h, can then be 
generated by a random statistical process which preserves this average. The fracture 
aperture h which governs pressure drop is determined from hi using weighting 
functions that are biased towards the small apertures. This method produces an 
equivalent aperture smaller than the laboratory average. The fracture permeability 
is calculated from the ‘cubic law’ (Snow 1968) 

h2 
12 

K = - .  

The momentum equation in this approach is assumed to be Darcy’s law (Bear 1972) 
which connects mean velocity u to the regional pressure gradient dp/dx as 

where p is fluid viscosity. Regions of the fracture where the local aperture is zero are 
called ‘contact areas’, and fluid has to turn around such regions away from the 
direction of the mean pressure gradient. The two definitions of fracture aperture h 
given above are inaccurate if the fracture has a distribution of contact areas and are 
useful only in relatively open fractures. Tsang (1984) has extended the cubic law to 
include effects of tortuosity of flow path arising from contact areas. Empirical 
tortuosity factors have also been used by Walsh & Brace (1984) in their work on 
porosity and permeability of rocks subjected to external pressure. Brown (1987) has 
studied flow in fractures whose apertures are generated using fractal theory, with 
flow governed by the Reynolds equation of lubrication, 

U*h3Up=0, (3a)  

h = h(x,y), ( 3 b )  

and 
h2 

u = -up. 
12P 

The average aperture is computed from ( 3 c )  interpreted in terms of an average 
velocity and pressure drop. 

With the velocity field determined by one of the methods given above, the 
spreading of thermal wakes, either from isolated heat sources or due to mixing of a 
hot and a cold stream is calculated from the following advectiondiffusion equation 
(Kays & Crawford 1980): 

aT 
--+u-UT = aV2T. ( 4 4  at 

In  this equation, T is temperature, t is time and a is the thermal diffusivity of the 
fluid. Since the velocity field u in (4a) is based on an empirical description of the flow, 
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FIauRE 1 .  Model of a rock fracture with contact areas. 

it ignores tortuosity and this equation frequently under-predicts the spreading of 
wakes. For this reason, ( 4 a )  is modified to the form 

(4b) 
aT 
-+u.VT = (a+E)V2T,  
at 

where ti is the dispersion coefficient. Developments in the theory of solute transport, 
analogous to energy transport, have been summarized by Dagan (1987) for flow in 
a porous medium and details of the calculation of may be found in that reference. 

The objectives of the present study are the following. First the fracture 
permeability defined as the ratio of mean flow and pressure drop across the length of 
the fracture is calculated using Stokes equations. These equations hold for a slow 
moving Newtonian fluid (Schlichting 1979). They are solved numerically in the 
complex pore space of the fracture. Secondly, the transport equation is solved using 
the velocity field I( obtained from the Stokes equations. The changes in permeability 
and the temperature profiles for different values of the percentage contact area and 
aperture have been determined in detail in this work. 

The rock fracture has been modelled in this work as consisting of parallel planes 
with a distribution of contact areas. This is shown in figure 1. It is assumed that the 
variation of aperture between contact areas is unimportant, as far as the pressure 
drop/dispersion problem is concerned. This implicitly states that contact areas are 
the primary cause of differences between fractures modelled as parallel plates and 
laboratory experiments. This is not universally true. For example, open fractures 
with little contact area will still suffer substantial pressure drop due to variable 
aperture. However, such fractures are easily analysed by one of the conventional 
methods given earlier. One reason for the choice of the contact area to describe a 
fracture is because of its easy measurability (Pyrak-Nolte et al. 1987). The parallel- 
plate model of a fracture with a distribution of circular contact areas is equivalent 
to the idealization of soil as a homogeneous, isotropic porous medium. 

The contact areas are assumed to be circular in shape in this study. This is not of 
serious concern since our numerical experiments show that the fracture permeability 
is only weakly dependent on the shape of contacts, for a large contact area. 
Permeability is defined as the ratio of mean flow through the fracture and the 
accompanying pressure drop. This is further normalized by the permeability of a 
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u = 0, T" = 0 

u = o  

- X  u = o ,  T , = O  

Vu.n = 0 
r, = 0 

FIGURE 2. Fracture plane and coordinate system. 

fracture with no contact area. The normalized permeability has been called 
equivalent permeability in this study and given the symbol K.  Results are presented 
for K as a function of the contact area. A similar study has been reported by Coulaud, 
Morel & Caltagirone (1988), who model flow in porous media as flow past closely 
spaced cylinders. 

The thermal problem consists of steady and unsteady mixing of two parallel 
streams at  different temperatures. The flow and transport equations have been 
solved here by a Galerkin finite-element technique. 

2. Formulation 
Figure 2 shows a section of the fracture with several contact areas. The Cartesian 

coordinate system and the direction of flow are also shown in this figure. The 
formulation is presented here in dimensionless form. Let u,, the mean velocity in the 
fracture be a velocity scale and d,  typically the size of a contact area be the 
lengthscale. The full equations governing fluid flow and heat transfer in the open 
spaces of the fracture are the Navier-Stokes equations, 

1 
Re 

u ,+u.vu = -vv"u-vp ,  

the incompressibility constraint, 

w.u = 0 (6) 

and the advection-diffusion equation, 

1 
Pe 

Z-I-U-VT = -V2T.  (7) 
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I n  ( 5 ) ,  Re = u r n d / v  is the Reynolds number, v is the kinematic viscosity of the fluid, 
and Pe is the PBclet number, urnd/a. Since urn, the characteristic velocity of 
groundwater motion is quite small, Re is also expected to be small. For example, the 
groundwater velocity used in nuclear waste disposal design is 100 m/year. For an 
average fracture opening of 0.5 mm, such as in crystalline rock, the Reynolds number 
is 0.002. Under these circumstances, it can be assumed that u-VU, the inertial terms 
are uniformly small, and hence can be dropped from ( 5 )  (Schlichting 1979). Further, 
the fracture aperture is also a small quantity in relation to its length, i.e. h/L  < 1, 
where L is a linear fracture dimension. Since the velocity component w, normal to  the 
fracture plane scales as 

W 
- = *($ 
urn 

we assume that w is identically zero in the fracture. This is equivalent to saying that 
the pressure is uniform over the fracture aperture. With these simplifications, the 
flow equations ( 5 )  and (6) reduce to the following form: 

(9b)  

u,+vy = 0. (9c)  

1 
~ t - ~ ( ~ " 2 + Z ' y Y + Z ' z z )  = -P Y' 

To eliminate the z-coordinate in (9), these are depth-averaged over the fracture 
aperture. It' is necessary at this point to assume a suitable profile for u as a function 
of z.  The form 

u = w, Y) g ( 4 ,  (10) 

where 

guarantees the no-slip condition a t  z = 0 and z = h and a non-zero value for u 
between z = 0 and h. The parabolic profile for g is a natural choice since it conforms 
to the fully developed shape of a velocity profile between two wall-. Equation (10) 
is applied everywhere in the fracture and so this procedure is equivalent to assuming 
zero development length for the flow. Equation (10) is not a point-wise solution of (9). 
However, i t  is useful to construct depth-averaged solutions in the fracture. 

Substituting (10) in (9) and integrating them as Stdz leads to 

= -Pp 

It is assumed that the temperature is uniform across the fracture aperture. This 
yields the depth-averaged advection-diffusion equation 

1 + ii. VT = - (T,, + Tyy), 
Pe 



Vis-n = 0 on the outflow boundary, 

u = 0 on the sidewalls (y = 0 , L )  

a% 
or _ -  - B = 0 on the sidewalls. 

I 

(13) 

I = 1 ,  x = o ,  y < g  

= 0.5, x = 0, y = 9, 
Ty=O, y =O,L ,  T,=O, x=L.J  

The sidewalls a t  y = 0 and L in (14) can be interpreted either as insulating or as 
being symmetry planes. On all contact areas, we specify the no-slip, non-conducting 
conditions 

u = 0 ,  V T . n = O .  (15) 

Equations (1 1) are solved simultaneously to extract a velocity and pressure field. 
The average pressure drop across the fracture is computed by integrating the 
pressure difference using Simpson’s rule. Equivalent permeability K is then obtained 
as the ratio (average velocity)/(average pressure drop), normalized by this value for 
no contact area. With this normalization, K becomes independent of Re, the 
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assuming that the bounding rock surfaces which define the fracture geometry have 
a low thermal conductivity. The process of depth-averaging the temperature 
distribution eliminates the possibility of Taylor dispersion due to shear in the flow. 
This is not expected to cause errors in the transverse dispersion problem studied here. 
Taylor dispersion due to shear in the velocity profile in the z-direction (equation (10)) 
will change the dispersion coefficient from a to a -t uh in dimensional variables and 
1/Pe to ( l / P e  + h/L)  in dimensionless variables. Clearly Taylor dispersion can be 
ignored if a % uh or 1/Pe % h/L. Consider the following commonly used numbers in 
fracture hydrology: a(water) = 16 x m2/s, u = 100 m/year, h = 0.5 mm. Then 
uh = 16 x 

Initial conditions required to start the transient calculation correspond to a 
stationary, cold fluid, i.e. u = 0 and T = 0 a t  t = 0. As discussed later in this paper, 
velocity transients last only for a short duration and hence may be ignored. In  the 
discussion given below, u refers to the velocity field at steady state, obtained by 
setting u, = 0 in (11). 

Equations (1 1 )  and (12) are solved subject to the following boundary conditions: 

m2/s and a % uh. 

P prescribed on the inflow boundary, 

Vii -n  = 0 on the outflow boundary, 

u = 0 on the sidewalls (y = 0, L )  

a% 
aY 

or - = @ = 0 on the sidewalls. 

On the inflow plane, a is taken as a constant and G as zero. Calculations reveal that 
any other distribution a t  x = 0 (say, parabolic) has only a small influence on the 
magnitude of equivalent permeability. Studies with both the no-slip and symmetry 
conditions applied on the sidewalls y = 0 and y = L are reported here. The exit 
boundary condition is unknown a t  the beginning of a calculation. The gradient 
condition implied by (13) has the advantage that it is the least reflective of all 
possible choices (Peyret & Taylor 1980), i.e. is known to affect the interior solution 
the least. Pressure need be specified at only one point in the flow domain, for 
determinacy. This point has been chosen to be on the exit plane (5 = L ) .  The 
temperature boundary conditions for transverse dispersion are 
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Reynolds number at the Stokes limit Re < 1. Once the velocity field is known, it is 
possible to solve for temperature from (12). 

2.1. Special cases 

It can be seen that the transport equation is independent of h, the aperture. 
However, h is a parameter in the flow equations and hence K depends on the choice 
of h relative to the fracture field dimension L. The following two special cases arise 
as h approaches either zero or infinity. 

h+O 

For small values of h, (11) reduce to the form 

a = -1h2V 
1 2  pRe 

and v . a =  0, 

the Darcy equations. 
When h is a spatial variable, the continuity equation is of the form 

V * u h  = 0 

so that the equation governing p is 

V - h 3 V p =  0, 

identical to the lubrication equation, (4a ) .  Hence, when h+O, the viscous pressure 
drop due to the proximity of the bounding walls ( z  = 0 and h) is predominant. The 
tortuosity effects due to flow moving around contact areas are accounted for by the 
terms (nxx+aYy) in the Stokes equations. These are of secondary importance when 
h + 0. The boundary conditions a t  y = 0 and L applied to the governing equations a t  
the limit h + 0 make the problem mathematically ill-posed. To circumvent this 
difficulty, the Darcian problem is solved by the Stokes solver without the no-slip 
conditions on the sidewalls y = 0 and L. 

h + o o  

equations 
For large values of h, one recovers two-dimensional fluid flow governed by the 

ax, -k aYy = Re V’p, 

V - a  = 0. 

This limit is sometimes realized in geologic faults (e.g. Ghost Dance fault at Yucca 
Mountains, Nevada, USA; see Montazer & Wilson 1984). It can be expected that, a t  
this limit, the effect of contact areas is strongly felt, and the deviation between Darcy 
and Stokes models would be the greatest. It is also possible that inertial effects are 
not entirely negligible in this problem. However, the emphasis of this paper is not on 
fractures or faults of large aperture, but in rock fractures with a small aperture whose 
permeability is affected by contact areas. 

3. Method of solution 
Equations (11) and (12) subject to boundary conditions (13)-(15) have been solved 

by a Galerkin finite-element method (Baker 1983). The discrete elements which 
subdivide the flow domain are chosen as triangular. Velocity and temperature are 
interpolated at six modes and pressure at three nodes. This is called unequal-order 
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interpolation, and is equivalent to the use of a staggered mesh in finite-difference 
schemes (Patankar 1980). It is related to the difference in the highest derivatives of 
velocity and pressure, as they appear in the governing equations. The elements are 
chosen as isoparametric and this allows an exact representation of circular boundaries 
such as the contact areas. Equations (11) are simultaneously solved by assembling 
the finite-element equations into a global matrix. The system of algebraic equations 
has been inverted by a sparse matrix solver (Duff 1980). This is followed by the 
solution of the transport equation. Unsteady problems are treated by an implicit 
finite-difference procedure, resulting in a marching solution along the time axis. For 
the level of discretization used in this study, no upwind approximation was found 
necessary for the convective terms in the transport equation for PBclet number up 
to 10, and in some cases, up to 100. 

In  the results reported here, the grid is so chosen that the smallest obstacle is 
resolved by 16 nodal points for velocity and temperature, and 8 nodal points for 
pressure. Selected runs with nodal points increased by a factor of four showed a 
change in equivalent permeability and exit temperature profiles of less than 4 %. A 
time step At = 0.1 has been found satisfactory in all unsteady calculations. 

3.1. Code validation 

A description of validation of the computer codes used in the present study is 
included in the Appendix. 

4. Results 
Results are presented below for a parallel channel with aperture h, a region size of 

L = 6 units and a distribution of contact areas. Each length unit is approximately 
the size of the contact area. The contact areas are taken as circular in shape, and 
arranged in a reasonably uniform pattern. The permeability of a fracture with a 
given h depends primarily on the total percentage contact area ; their shape size and 
distribution play only a secondary role. One can think of certain extreme patterns of 
distribution where K goes to zero, even for a small percentage contact area. The 
probability of occurrence of such patterns in a real fracture is expected to be small. 
The choice of L as six units is arbitrary and does not alter the results, since K is only 
a function of percentage contact. 

4.1. Steady $ow in a fracture 

Figure 3 is a plot of K ,  the equivalent permeability, as a function of N ,  the number 
of contact areas. Each contact occupies an area of 2.18% over the fracture. The 
largest value of N studied here is 9, which corresponds to 20 % of the fracture. The 
dependence of K on N has been plotted for three cases corresponding to the aperture 
h = 00, the two-dimensional problem; h+O, the Darcy limit; and h = 1,  an 
intermediate value. In  each problem K monotonically decreases with increasing 
contact area. The decrease is, however, rapid in the two-dimensional problem since 
the tortuosity of flow path alone contributes to the pressure drop. At the Darcy limit 
(h+O) ,  K diminishes gradually for increasing N ,  since much of the pressure drop 
occurs owing to the proximity of the bounding walls of the fracture in the z-direction. 
At h = 1, (relative to L = 6) pressure drops due to both tortuosity and wall friction 
are operative. An empirical method of calculating equivalent permeability is to 
obtain h based on the real flow volume available in the fracture. For a contact area 
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FIQURE 3. Plot of equivalent permeability as a function of the number of contact areas. 

fraction equal to C ,  the flow volume is (1  - C) L2 ; the aperture of a uniform open 
fracture of edge L with this volume is 

h = (1 -C)L2 /L2  = l-C, 

and hence, from (l) ,  the equivalent permeability 

K = (1-C)2. (16) 

This result is also plotted in figure 3. Values predicted by (16) are quite close to the 
Darcy permeabilities. 

For the special case of N = 9 ( -20 % contact), figure 4 shows the variation in 
equivalent permeability with respect to the fracture aperture h. The two limits of 
h -+ 0 and h --f GO are also shown in the figure. It is seen from here that for h/L of order 
unity or greater, the two-dimensional approximation is valid. It must be noted here 
that real fractures are slender and if L is interpreted as the real length dimension, h/L 
would always be quite small. It is implied in this work that L2 is a measure of a 
repeating (or a t  least a representative) area of the fracture, and that L is much 
smaller than the entire linear dimension of the fracture. Taking this into account, 
fractures with h/L 3 1 are still seldom observed in rocks. 

The Darcy limit is reached at  h/L < 0.016. Fractures which satisfy this criterion 
arc thin. These are affected by the contact area, though they are insensitive to both 
their pattern of distribution and degree of fineness. Further results for h = 1 and 
h+ GO are given below. 

The total pressure drop required to sustain a given quantity of flow in a fracture 
consists of contributions from viscous friction at  the bounding planes ( z  = 0 and h)  
and the contact areas. The no-slip condition used in the present study a t  the sidewalls 
(y = 0, L )  causes additional pressure drop. To ensure that the permeability results are 
insensitive to the sidewall boundary conditions, calculations have been repeated with 
symmetry boundary conditions applied at  y =  0 and L. The results of these 
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FIQURE 5. Plot of equivalent permeability as a function of the number of contact areas: 

symmetric sidewalls. 

calculations are shown in figure 5 for h = 1 and h = 00. The equivalent permeability 
K has been normalized with its value at zero contact area (N  = 0) ,  but with no-slip 
conditions at the sidewalls. Hence, the magnitudes of K in figures 3 and 5 are directly 
comparable. The Stokes solutions from figure 3 have been included here for 
comparison. It is seen from these figures that the permeability calculated using 
symmetry conditions is always larger than that calculated with no-slip conditions a t  
y = 0 and L. This difference is large when contact area is small and h is large. For 
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FIGURE 6. (a)  Plot of variabiiity of equivalent permeability with pattern 
contact areas. (6 )  Patterns of contact areas used in (Q). 

of distribution of 

N > 4 (contact area > 9%), these boundary conditions are secondary at  any value of 
h. Results with the no-slip condition alone are presented below, 

Figure 6(a )  shows the variability in equivalent permeability with the pattern of 
distribution of contact area. Four different patterns involving ciroular contact areas 
have been considered for four different values of N .  These patterns are summarized 
in figure 6 ( b ) .  These studies have been performed for various values of h. Results 
show that the variability of K with pattern is large for large values of h and small 
contact area. For a given percentage contact, K is largest for those patterns which 
permit the formation of large pathways to flow. These are called 'channels', in the 
porous-media literature. With the exception of patterns which form such channels 
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(for example, N = 2,  pattern 2 ;  N = 6 ;  pattern 2),  the variability of K with the 
location of contact areas is usually small. It further decreases with increasing fineness 
of contact and increasing contact area. 

Figure 7 shows the dependence of K on the fineness of distribution of contact, 
keeping the total contact area a constant. Increasing fineness is accomplished by 
subdividing a large circular area into smaller circular areas, the number of such areas 
representing the extent of fineness. The trend seen in figure 7 is towards lower 
permeability for increasing fineness of distribution. However, beyond a certain 
fineness level K is nearly constant, with some fluctuation arising from differences in 
pattern of location of contact areas. Such a procedure of starting with a large single 
contact area and studying the permeability of the fracture as it is subdivided, 
keeping the total contact area a constant, is useful in determining the permeability 
of rock fractures with a known percentage contact. Real fractures have a degree of 
fineness which is much larger than what can be simulated numerically on a main 
frame computer (for example, VAX 11/780). The above procedure is a realistic 
alternative to modelling these fractures directly. 

4.2. Transport in fractures 
Once the velocity field is computed, it is then possible to solve the transport problem 
(equation (12)) for dispersion patterns of energy. The solution depends on the choice 
of initial and boundary conditions for temperature. For unsteady problems, the fluid 
in the fracture is taken to be a t  zero temperature, with thermal loading arising at the 
inflow boundary. To bring into focus the dispersion problem, i.e. the spreading of 
thermal wakes, we consider the boundary condition given by (14). This corresponds 
to two streams at different temperature ( T =  1 and 0) which start to mix in the 
fracture. Mixing is initiated a t  their interface, and the dispersion problem consists of 
determining the width of the mixing region. A situation such as this is encountered 
when two fractures containing fluids a t  different temperatures feed into a third one. 
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FIGURE 8. Development of temperature profiles with distance at steady state with no contact 
area: (a) Pe = 1 ; ( b )  Pe = 10. 

4.2.1. Steady state 

Transpo,rt of thermal energy at  steady state is considered first. Figure 8(a ,  b)  
shows development of temperature profiles in a parallel channel with no contact area. 
Results for two PBclet numbers ( 1  and 10) are presented. The temperature profiles a t  
various 2-positions given in figure 8 ( a )  at  Pe = 1, correspond closely to the 
conduction limit (Pe = 0). Hence, the conduction regime may be thought of as 
extending up to Pe x 1. At this limit, the temperature difference between the hot and 
cold streams diminishes rapidly with distance. At higher PQclet numbers this 
difference persists over larger distances in the downstream direction. These results 
are independent of the aperture h. The flow is nearly parallel everywhere, except near 
the sidewalls y = 0 and L ,  where a no-slip condition is applied. An exception occurs 
at the Darcy limit (h  --f O), when the mathematical character of the flow equations (9) 
changes, and the no-slip conditions on the sidewalls can no longer be applied. Though 
the near-wall velocity field is altered at  the Darcy limit, the overall temperature 
profiles remains unaffected. The differences arising from changing the fracture 
aperture become truly negligible if the PBclet number is larger than 10. 

Figure 9 shows an explicit comparison of temperature profiles using the Darcy and 
the Stokes models for a fracture with nine contact areas. These correspond to h = 0 
and 1 respectively. The Pkclet number is unity in this figure, and the temperature 
profiles at x = L are shown. The difference between the two profiles is small at small 
s-values and negligible for Pe 2 10. Even at Pe = 1, the difference is small in the core 
of the fracture, and increases towards the walls. Since the Darcy model does not 
permit the no-slip condition at the sidewalls, the velocities in the x-direction tend to 
be larger here than in the Stokes model. Hence, the predicted temperature deviations 
from the mean are lower and the Darcy model computes the temperature field as 
better mixed. However, this difference is usually negligible and one may conclude 
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T 

FIGURE 9, Comparison of temperature profiles in a fracture using Darcy and Stokes models; 
Pe = 1 ,  1: = 6, contact area 20 YO. 

that the solution of the transport equation at a given Pdclet number is insensitive to 
the choice of the flow model. 

Further dispersion can occur in a fracture due to the complexity of flow path, as 
in a porous medium. Figures lO(a)  and 1 0 ( b )  show a comparison of temperature 
profiles a t  two PBclet numbers, in a fracture with and without contact areas. The 
contact area percentage is as high as 20 %. The differences in the temperature profiles 
in the two figures are again seen to be small. 

The results given above show that transverse dispersion is independent of (a)  
choice of aperture h and ( b )  the contact area percentage. It is a function only of PBclet 
number at steady state. For transport in a homogeneous, isotropic porous medium, 
1/Pe is replaced by ( l /Pe+ y / d ) ,  where y is the dispersion length (Dagan 1987) and 
d is the charackeristic dimension appearing in the definition of Pe ; y is usually of the 
order of the pore size. The dispersion correction y / d  accounts for the complexity of 
the pore geometry in which the local flow occurs. It is seen in this study that such 
a correction is not necessary for fracture problems since the tortuosity of the flow 
path does not increase dispersion to any measurable extent. 

4.2.2. Unsteady flow and transport 
Under transient flow conditions, the total pressure drop which sustains flow will be 

larger than at steady state because part of the pressure drop goes towards 
accelerating the fluid. Transients arising from a jump in the magnitude of inlet flow 
are considered here. It is of interest to know the time taken by the fluid to reach 
steady state, and the influence of a distribution of contact areas in the fracture. Since 
the fluid is taken as incompressible, any change in mean velocity a t  the inflow 
boundary is instantaneously conveyed throughout the flow region. Transient effects 
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FIGURE 10. Comparison of temperature profiles in a fracture with and without contact areas, at 
x = 6:  (a )  Pe = 0 ;  ( 0 )  Pe = 10. 
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are related to the time taken by the no-slip boundaries to make their presence felt 
on the increased flow rate. During this period, flow is accompanied by a large 
pressure drop and hence the equivalent permeability is smaller than the steady state 
value. The ratio of the instantaneous permeability to its steady-state value is called 
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FIGURE 11. Relative permeability of a two-dimensional fracture as a function of time. 

relative permeability K,, in the present work. Figure 11 shows a plot of K ,  as a 
function of dimensionless time for flow in a two-dimensional channel (h-r  a), with 
no-slip sidewalls (y = 0, L ) ,  with and without contact areas. 

Since transients exist in the presence of no-slip boundaries, a flow region with 
symmetry conditions applied to sidewalls and no contact area would respond 
instantaneously to changes in inlet flow. For a region with no-slip sidewalls, the 
diffusion of momentum will occur both along the flow direction and normal to  it. This 
will lead to transients which will last for a time period proportional to L2.  The length 
of this time period is independent of the size of the jump in inflow. This has been 
confirmed by numerical experiments. Hence, the plots in figure 11 are applicable for 
all changes in mean velocity through the fracture, as long as Stokes flow conditions 
can be assumed to prevail in it. For a flow with contact areas, the average distance 
between solid boundaries is reduced, leading to an overall reduction in the transient 
period. The extent of this reduction depends on the fineness of distribution of contact 
area. In  figure 11, the fracture is two-dimensional (i.e. h+m) with five obstacles 
uniformly distributed over the flow domain. The average distance between solid 
boundaries is difficult to  define but the ratio R = Flow area/Flow perimeter, is one 
way to measure it. When the contact area is 10.9% as in figure 11, R is 1.16. The 
transients last for a period of 0.15 units, when the contact area is zero. When the 
latter is 10.9 YO, the transients can be expected to last for t = 0.15 (R/L)' = 0.0056 
units. This is not precisely borne out in figure 11, but the drastic reduction in the 
unsteady period is clearly seen. For three-dimensional fractures, (finite h ) ,  the 
spacing between the top and bottom walls ( z  = 0,h)  governs the diffusion time of 
transients. Hence, in fractures with small apertures, the flow may be assumed to 
reach steady state instantaneously. 

It is assumed below that the flow is steady, and i t  is of interest to determine the 
rate of transport of thermal energy in a fracture, in an initially cold fluid. The 
transport equation contains h, the fracture aperture, only through the velocity 
components. However, the effect of including h has been shown to be small, in the 
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discussion on steady transport. This continues to hold for the unsteady problem as 
well. The velocity field corresponding to h = 1 has been used in the results reported 
below. Once again, the dispersion problem for the mixing of two streams at  different 
temperatures is studied. Figure 12 shows temperature profiles a t  two different 
instants in a fracture, with and without contact areas. At t = 5 units, the 
temperature profiles a t  the fracture exit plane (x = L )  are different for the fractures 
which have zero and 20 YO contact. However, a t  t = 20 units, steady state is attained 
and the two profiles nearly merge. Hence, differences caused by a contact area 
distribution are important only if the transient period of transport is large. 

It is clear from figure 12 that the transient temperature profile for a fracture with 
20 YO contact area resembles a high-P8clet-number solution, since the initial step 
profile continues to be preserved. To examine this point in greater detail, calculations 
have been performed here for transport of a uniform inlet temperature profile in a 
fracture, with and without contact areas. The results are shown in figures 13 (a )  and 
13 (b )  for contact areas of 0 and 20 YO, the latter coming from nine obstacles arranged 
in a uniform pattern. In the presence of contact areas, the exit temperature profile is 
not a constant. However, since the areas are evenly distributed over the fracture 
plane, the temperature at the mid-point (x = L, y = &) is chosen as a representative 
or the most probable value on this plane. Results are given in figure 13(a, b )  for 
PBclet numbers of 0.1, 1 ,  10 and 50. At Pe = 0.1, the difference in the results for 
N = 0 and 9 is insignificant. For Pe = 10 and 50, a front-type solution is seen for both 
N = 0 and 9. However, the front for N = 9 is located behind that of N = 0. At 
Pe = 1, the advection and diffusion mechanisms are of equal magnitude, and the 
difference between the profiles of N = 0 and 9 is not as small as at  Pe = 0.1, nor as 
large as when Pe = 10 or 50. The solution for Pe --f 00 and N = 0 is T = 0, t < L and 
T = 1, t > L. This is a front a t  t = L (=6 ,  in this study). For Pe = 10 and 50 the 
temperature response is not as sharp as at Pe --f 00, though it is centred at t = 6 .  

An explanation for the trends seen in figure 13(a, b)  is as follows. At Pe = 0.1, the 
characteristic front velocity being governed by molecular diffusion is a /d .  The time 
taken for the exit temperature to respond to an increase in the inflow temperature 
is Ldla and primarily a function of the distance to be covered and the fluid 
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FIQIJRE 13. Rise in temperature at the exit plane of a fracture at L = 6:  (a) Pe = 0.1, 1 ; 
( b )  Pe = 10, 50. 

diffusivity. Hence, at  Pe = 0.1, the curves in figure 13 (a) for N = 0 and 9 are nearly 
identical. At  higher PBclet numbers (Pe 2 lo), the front velocity is close to the flow 
velocity in the fracture. For N = 0, this is urn, the mean velocity at the inlet. For 
N = 9, the blockage due to contact areas increases the average velocity within the 
fracture. For a contact area fraction of C, this increase can be estimated as 1/( 1 - C). 
For C = 0.2, the average fluid velocity increases to 1 . 2 5 ~ ~ .  Hence, the thermal front 
will be seen not at  t = L but a t  (1 -C) L,  i.e. 0.U. This is 4.8 in the present problem. 
The fronts in figure 13 ( b ) ,  a t  Pe = 10 and 50, and N = 9 are indeed centred at t = 4.8, 
i.e. T = 0.5 at t = 4.8. 

The simple correction for mean velocity to obtain the true dispersion profiles does 
not carry over to non-uniform thermal inflow conditions. For the mixing profile (14), 
figure 12 shows the corrected temperature values calculated in a parallel channel 
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FIGERE 14. Comparison of computed wall pressure in an expanding channel with results of 
Napolitano & Orlandi (1985), Re = 10. 

without contact areas. The correction has been carried out to account for 20% 
contact, i.e. the mean velocity is increased by a factor 1.25. This raises the PBclet 
number to 12.5 and time t non-dimensionalized by dlu,  to 6.25. Figure 12 shows that 
the correction is in the right direction, but is only qualitatively valid. Hence, we 
conclude that for an accurate simulation of dispersion, the governing equations must 
be solved in the complex flow space of the fracture. 

5. Conclusions 
Based on the model of a fracture as consisting of parallel plates with a distribution 

of contact areas, the following conclusions have been drawn in the present study, 
(i) The equivalent permeability K of a fracture depends on both the aperture and 

the contact area. The Darcy model, with local permeability given as h2/12, is 
applicable if h/L 6 0.016, where L is the size of the smallest repeating pattern over 
the fracture plane. For h/L 2 0.016, tortuosity effects are important and must be 
included in the permeability calculations. The depth-averaged Stokes equations can 
be used for this purpose. 

(ii) The permeability K does depend on the pattern of distribution of contact area 
and the level of its fineness. However, the dependence becomes increasingly weak for 
small values of h. Further, for any h, K approaches a constant value as the fineness 
level is progressively increased. 

(iii) In real fractures with sufficient contact area, flow transients last a very short 
time and hence can be ignored. 

(iv) At steady state, the temperature distribution arising from the mixing of two 
streams is almost independent of the choice of the fracture aperture. It is also 
independent of the contact area fraction C for C < 0.2 and Pe < 10. 

(v) Transient transport process can bring about significant changes in temperature 
profiles between fractures with zero and non-zero contact areas. The duration of the 
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FIGURE 15. Comparison of computed wall vorticity in an expanding channel with Wapolitano & 
Orlandi (1985), Re = 10. 

transient is governed by the value of the PBclet number. For Pe < 1, transport is 
diffusion controlled and for Pe 2 10, it is advection controlled. For a fracture with 
uniformly distributed contacts which occupy an area fraction C, the advection- 
controlled thermal front moves with an effective speed of urn/( 1 - C). 

Part of flow calculations were carried out during the author’s stay at  Lawrence 
Berkeley Laboratory, USA. Remaining calculations were done on the ND-computer, 
CAD-project, IIT, Kanpur. 

Appendix. Code validation 
The computer code which solves Stokes equations is part of a larger program 

designed to solve Navier-Stokes equations in complex geometries. The latter has 
been extensively tested against several analytical solutions and published numerical 
solutions. In figure 14, the solution for wall pressure in an expanding channel is 
compared to the bench-mark result given by Napolitano & Orlandi (1985). In figure 
15, the wall vorticity values are compared. Both comparisons are seen to be good. 
While these validate the Navier-Stokes code, only the Stokes part of it has been used 
in this work. The steady-state transport equation, u-VT = (1/Pe)V2T has been 
solved for boundary conditions given by (14) in the text, and with no contact area. 
This equation is one-dimensional and has an analytical solution, 

The comparison between analytical and numerical solutions is shown in figure 16. 
The unsteady transport code has been tested against an analytical solution of a one- 
dimensional problem, 
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FIQURE 16. Comparison of numerical and analytical solutions for steady-state transport in a 
fracture, Pe = 10. 
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FIGURE 17. Comparison of numerical and analytical solutions for unsteady 
fracture at t = 1. 

This solution is 

t = 0 ,  T = 0 ,  x > O ,  
x = O ,  T = l ,  t > 0 ,  

X + W ,  T = O ,  t > 0 .  

transport in a 
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The comparison between the analytical and the unsteady numerical solutions is 
shown in figure 17. 
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